S.K.P. GOVERNMENT COLLEGE Guntakal

COURSE OUTCOMES

DEPARTMENT OF CHEMISTRY

REVISED SYLLABUS OF B.Sc (Chemistry)

UNDER CBCS FRAMEWORK WITH EFFECT FROM 2020-2021

PROGRAMME: THREE-YEAR B.Sc. (B.Sc Chemistry)

(With Learning Outcomes, Unit-wise Syllabus, References, Co-curricular Activities & Model Q.P.)

For Fifteen Courses of 1, 2, 3 & 4 Semesters)

(To be Implemented from 2020-21 Academic Year)

Andhra Pradesh State Council of Higher Education

B.Sc. Chemistry Revised Syllabus under CBCS w.e.f. 2020-21

Structure of Chemistry Core Syllabus under CBCS

YEAR	SEMESTER	COURSE	TITLE	MARKS	CREDITS
			Inorganic and PhysicalChemistry	100	03
		l	Practical – I Analysis of SALT MIXTURE	50	02
1			Organic and General Chemistry	100	03
	II	II	Practical – IIVolumetric Analysis	50	02
			Organic Chemistry andSpectroscopy	100	03
	III	III	Practical – IIIOrganic preparations and IR SpectralAnalysis	50	02
II		IV	Inorganic, Organic and PhysicalChemistry	100	03
	IV		Practical – IVOrganic Qualitative analysis	50	02
			Inorganic and PhysicalChemistry	100	02
		V	Practical-V Course Conductometric and Potentiometric Titrimetry	50	02

SEMESTER - I

Course I (Inorganic & Physical Chemistry) 60 hrs. (4h/w)

Course outcomes:

At the end of the course, the student will be able to;

- 1. Understand the basic concepts of p-block elements
- 2. Explain the difference between solid, liquid and gases in terms of intermolecular interactions.
- 3. Apply the concepts of gas equations, Ph and electrolytes while studying other chemistry courses.

Co-curricular activities and Assessment Methods

- 1. Continuous Evaluation: Monitoring the progress of student's learning
- 2. ClassTests ,Worksheets and Quizzes
- 3. Presentations, Projects and Assignments and Group Discussions: Enhances critical thinkin gskills and personality
- 4. Semester- end Examination: critical indicator of student's learning and teaching methods adopted byteachers through out the semester.

LABORATORY COURSE -I

30hrs (2 h / w)

Practical-I Analysis of SALT MIXTURE(At

the end of Semester-I)

Qualitative inorganic analysis (Minimum of Six mixtures should be analysed)

50 M

Course outcomes:

- 1. Understand the basic concepts of qualitative analysis of inorganic mixture
- 2. Use glassware, equipment and chemicals and follow experimental procedures in thelaboratory
- Apply the concepts of common ion effect, solubility product and concepts related toqualitative analysis

SEMESTER – II

Course II – (Organic & General Chemistry) 60 hrs (4h/w)

Course outcomes:

At the end of the course, the student will be able to;

- 1. Understand and explain the differential behavior of organic compounds based on fundamental concepts learnt.
- 2. Formulate the mechanism of organic reactions by recalling and correlating the fundamental properties of the reactants involved.
- Learn and identify many organic reaction mechanisms including FreeRadical Substitution, Electrophilic Addition and Electrophilic Aromatic Substitution.
- 4. Correlateanddescribethestereochemicalpropertiesoforganiccompoundsa ndreactions.

Co-curricular activities and Assessment Methods: Continuous Evaluation: Monitoring the progress of student's learning Class Tests, Worksheets and Quizzes Presentations, Projects and Assignments and Group Discussions: Enhances critical thinking skills and personality Semester-end Examination: critical indicator of student's learning and teaching methods adopted by teachers throughout the semester.

LABORATORY COURSE-II

30hrs (2 h / w)

Practical-II Volumetric Analysis

(At the end of Semester-II)

Course outcomes:

- Use glassware, equipment and chemicals and follow experimental procedures in thelaboratory
- 2. Understand and explain the volumetric analysis based on fundamental concepts learnt in ionic equilibria
- 3. Learn and identify the concepts of a standard solutions, primary and secondary standards

4.	Facilitate the learner to make solutions of various molar concentrations. This may
	include: The concept of the mole; Converting moles to grams; Converting grams
	tomoles; Defining concentration; Dilution of Solutions; Making different molar
	concentrations.

SEMESTER - III

Course III (ORGANICCHEMISTRY&SPECTROSCOPY) 60hrs (4 h / w)

Course outcomes:

At the end of the course, the student will be able to;

- Understand preparation, properties and reactions of haloalkanes ,haloarenes andoxygen containing functional groups.
- 2. Use the synthetic chemistry learnt in this course to do functional group transformations.
- 3. To propose plausible mechanisms for any relevant reaction

Co-curricular activities and Assessment Methods Continuous Evaluation: Monitoring the progress of student's learning Class Tests, Worksheets and Quizzes Presentations, Projects and Assignments and Group Discussions: Enhances critical thinking skills and personality Semester-end Examination: critical indicator of student's learning and teaching methods adopted by teachers throughout the semester.

LABORATORY COURSE - III

30hrs (2 h / w)

Practical Course-III Organic preparations and IR Spectral Analysis

(At the end of Semester- III)

Course outcomes:

On the completion of the course, the student will be able to do the following:

- how to use glassware, equipment and chemicals and follow experimental procedures in the laboratory
- 2. how to calculate limiting reagent, theoretical yield, and percent yield
- 3. how to engage in safe laboratory practices by handling laboratory glassware, equipment, and chemical reagents appropriately
- 4. how to dispose of chemicals in a safe and responsible manner
- how to perform common laboratory techniques including reflux, distillation, recrystallization, vacuum filtration.
- 6. how to create and carry out work up and separation procedures

7.	how to critically evaluate data collected to determine the identity, purity, and
	percentyield of products and to summarize findings in writing in a clear and concise
	manner

SEMESTER - IV

Course IV (INORGANIC, ORGANIC AND PHYSICAL CHEMISTRY) 60hrs (4 h / w)

Course outcomes:

At the end of the course, the student will be able to;

- 1. To learn about the laws of absorption of light energy by molecules and the subsequent photochemical reactions.
- 2. To understand the concept of quantum efficiency and mechanisms of photochemical reactions.

Co-curricular activities and Assessment Methods

Continuous Evaluation: Monitoring the progress of student's learning Class Tests,

Worksheets and Quizzes Presentations, Projects and Assignments and Group Discussions:

Enhances critical thinking skills and personality

Semester-end Examination: critical indicator of student's learning and teaching methods adopted by teachers through out the semester.

LABORATORY COURSE -IV 30hrs(2 h / w)

Practical Course-IV Organic Qualitative analysis 50 M

(At the end of Semester- IV)

Course outcomes:

- Use glassware, equipment and chemicals and follow experimental procedures in thelaboratory
- 2. Determine melting and boiling points of organic compound
- 3. Understand the application of concepts of different organic reactions studied in theory part of organic chemistry

SEMESTER - IV Course- V (INORGANIC &PHYSICAL CHEMISTRY) 60 hrs (4 h / w)

Course outcomes:

At the end of the course, the student will be able to;

- 1. Understand concepts Of boundary conditions and quantization, probability distribution, most probable values, uncertainty and expectation values
- 2. Application of quantization to spectroscopy.
- 3. Various types of spectra and their use in structure determination.

Co-curricular activities and Assessment Methods

Continuous Evaluation: Monitoring the progress of student's learning Class Tests,

Worksheets and Quizzes Presentations, Projects and Assignments and Group Discussions:

Enhances critical thinking skills and personality

Semester-end Examination: critical indicator of student's learning and teaching methods adopted by teachers through out the semester.

SEMESTER - IV

Course-V LABORATORY COURSE 30hrs (2 h / w)

Practical-Course –V Conductometric and Potentiometric Titrimetry 50 M Course outcomes:

- Use glassware, equipment and chemicals and follow experimental procedures in thelaboratory
- 2. Apply concepts of electrochemistry in experiments
- 3. Be familiar with electroanalytical methods and techniques in analytical chemistry which study an analyte by measuring the potential (volts) and/or current (amperes) inan electrochemical cell containing the analyte