ANDHRA PRADESH STATE COUNCIL OF HIGHER EDUCATION (A Statutory body of the Government of Andhra Pradesh) 3rd,4th and 5th floors, Neeladri Towers, Sri Ram Nagar, 6th Battalion Road, Atmakur (V), Mangalagiri (M), Guntur-522 503, Andhra Pradesh **Web**: www.apsche.org **Email**: secretaryapsche@gmail.com # REVISED SYLLABUS OF BOTANY UNDER CBCS FRAMEWORK WITH EFFECT FROM 2020-21 ### PROGRAMME: FOUR-YEAR UG HONOURS PROGRAMME **BOTANY** (With Learning Outcomes, Unit-wise Syllabus, References, Co-curricular Activities & Model Q.P.) For Fifteen Courses of 1, 2, 3 & 4 Semesters) (To be Implemented from 2020-21 Academic Year) # APSCHE/ REVISION OF C.B.C.S – BOTANY COURSE W.E.F.2020-21 | S.
No. | Semester | Title of the Course (Paper) | Hours
/week | Max.
Marks
(SEE) | Marks
in CIA | Credit
s | |-----------|-----------------------|---|----------------|--|-----------------|-------------| | 1. | SemI/
Course-1 | Fundamentals of Microbes and Non-vascular Plants | 04 | 75 | 25 | 03 | | | Course-1
Practical | Fundamentals of Microbes and Non-vascular Plants | 03 | Max. Marks-50
Internal assessment
at Semester end | | 02 | | 2. | SemII/
Course-2 | Basics of Vascular plants and Phytogeography | 04 | 75 | 25 | 03 | | | Course-2
Practical | Basics of Vascular plants and Phytogeography | 03 | Max. Marks-50 External assessment at Semester end | | 02 | | 3. | SemIII/
Course-3 | Anatomy and Embryology of Angiosperms, Plant Ecology and Biodiversity | 04 | 75 | 25 | 03 | | | Course-3
Practical | Anatomy and Embryology of Angiosperms, Plant Ecology and Biodiversity | 03 | Max. Marks-50
Internal assessment
at Semester end | | 02 | | 4. | SemIV
Course-4 | Plant Physiology and Metabolism | 03 | 75 | 25 | 03 | | | Course-
4Practical | Plant Physiology and Metabolism | 03 | Max. Marks-50
External
assessment at
Semester end | | 02 | | 5. | Sem IV
Course- 5 | Cell Biology, Genetics and Plant Breeding | 04 | 75 | 25 | 03 | | | Course-
5Practical | Cell Biology, Genetics and Plant Breeding | 03 | Max. Marks-50
External
assessment at
Semester end | | 02 | | 6. | | Domain related Skill Enhancement Courses (02) | 03 | 75 | 25 | 03 | | | Sem V | - Three (3) pairs of courses (each pair has 2 related courses) will be offered, | 03 | Max. Marks-50
Internal assessment
at Semester end | | 02 | | | Course – 6 & 7 | student has to choose a pair of courses. | 03 | 75 | 25 | 03 | | | | | 03 | Max. Marks-50
Internal assessment
at Semester end | | 02 | ### IV Semester/ Botany Core Course - # 4 Plant Physiology and Metabolism (Total hours of teaching – 60 @ 04 Hrs./Week) ### **Theory:** ### **Learning outcomes:** On successful completion of this course, the students will be able to; - ➤ Comprehend the importance of water in plant life and mechanisms for transport ofwater and solutes in plants. - Evaluate the role of minerals in plant nutrition and their deficiency symptoms. - ➤ Interpret the role of enzymes in plant metabolism. - ➤ Critically understand the light reactions and carbon assimilation processes responsible for synthesis of food in plants. - Analyze the biochemical reactions in relation to Nitrogen and lipid metabolisms. - Evaluate the physiological factors that regulate growth and development in plants. - ➤ Examine the role of light on flowering and explain physiology of plants under stress conditions. ### **Unit – 1: Plant-Water relations** 10 Hrs. - 1. Importance of water to plant life, physical properties of water, diffusion, imbibition, osmosis. water potential, osmotic potential, pressure potential. - 2. Absorption and lateral transport of water; Ascent of sap - 3. Transpiration: stomata structure and mechanism of stomatal movements (K⁺ ion flux). - 4. Mechanism of phloem transport; source-sink relationships. # Unit – 2: Mineral nutrition, Enzymes and Respiration 14 Hrs. - 1. Essential macro and micro mineral nutrients and their role in plants; symptoms of mineral deficiency - 2. Absorption of mineral ions; passive and active processes. - 3. Characteristics, nomenclature and classification of Enzymes. Mechanism of enzyme action, enzyme kinetics. 4. Respiration: Aerobic and Anaerobic; Glycolysis, Krebs cycle; electron transport system, mechanism of oxidative phosphorylation, Pentose Phosphate Pathway (HMP shunt). ### **Unit – 3: Photosynthesis and Photorespiration** 12 Hrs. - 1. Photosynthesis: Photosynthetic pigments, absorption and action spectra; Red drop and Emerson enhancement effect - 2. Concept of two photosystems; mechanism of photosynthetic electron transport and evolution of oxygen; photophosphorylation - 3. Carbon assimilation pathways (C3,C4 and CAM); - 4. Photorespiration C2 pathway ## **Unit – 4: Nitrogen and lipid metabolism** 12 Hrs. - 1. Nitrogen metabolism: Biological nitrogen fixation asymbiotic and symbiotic nitrogen fixing organisms. Nitrogenase enzyme system. - 2. Lipid metabolism: Classification of Plant lipids, saturated and unsaturated fatty acids. - 3. Anabolism of triglycerides, β -oxidation of fatty acids, Glyoxylate cycle. ### Unit – 5: Plant growth - development and stress physiology 12 Hrs. - 1. Growth and Development: Definition, phases and kinetics of growth. - 2. Physiological effects of Plant Growth Regulators (PGRs) auxins, gibberellins, cytokinins, ABA, ethylene and brassinosteroids. - 3. Physiology of flowering: Photoperiodism, role of phytochrome in flowering. - 4. Seed germination and senescence; physiological changes. ### **Text books:** - ➤ Botany IV (Vrukshasastram-II) : Telugu Akademi, Hyderabad - ➤ Pandey, B.P. (2013) *College Botany, Volume-III*, S. Chand Publishing, New Delhi - ➤ Ghosh, A. K., K. Bhattacharya &G. Hait (2011) A Text Book of Botany, Volume-III, New Central Book Agency Pvt. Ltd., Kolkata ### **Books for Reference:** - Aravind Kumar & S.S. Purohit (1998) *Plant Physiology Fundamentals and Applications*, AgroBotanica, Bikaner - Datta, S.C. (2007) Plant Physiology, New Age International (P) Ltd., Publishers, New Delhi - ➤ Hans Mohr & P. Schopfer (2006) *Plant Physiology*, Springer (India) Pvt. Ltd., New Delhi - ➤ Hans-Walter heldt (2005) *Plant Biochemistry*, Academic Press, U.S.A. - ➤ Hopkins, W.G. & N.P.A. Huner (2014) *Introduction to Plant Physiology*, Wiley India Pvt. Ltd., New Delhi - Noggle Ray & J. Fritz (2013) Introductory Plant Physiology, Prentice Hall (India), New Delhi - Pandey, S.M. &B.K.Sinha (2006) Plant Physiology, Vikas Publishing House, New Delhi - Salisbury, Frank B. & Cleon W. Ross (2007) Plant Physiology, Thomsen & Wadsworth, Austalia & U.S.A - Sinha, R.K. (2014) Modern Plant Physiology, Narosa Publishing House, New Delhi - ➤ Taiz, L.&E. Zeiger (2003) *Plant Physiology*, Panima Publishers, New Delhi - ➤ Verma, V.(2007) Text Book of Plant Physiology, Ane Books India, New Delhi # Practical Syllabus of Botany Core Course – 4 / Semester – IVPlant Physiology and Metabolism (Total hours of laboratory exercises 30 Hrs. @ 02 Hrs. /Week) **Course outcomes:** On successful completion of this practical course, students shall be able to: - 1. Conduct lab and field experiments pertaining to Plant Physiology, that is, biophysical and biochemical processes using related glassware, equipment, chemicals and plant material. - 2. Estimate the quantities and qualitative expressions using experimental results and calculations - 3. Demonstrate the factors responsible for growth and development in plants. ### **Practical Syllabus** - 1. Determination of osmotic potential of plant cell sap by plasmolytic method using *Rhoeo/Tradescantia* leaves. - Calculation of stomatal index and stomatal frequency of a mesophyte and a xerophyte. - 3. Determination of rate of transpiration using Cobalt chloride method / Ganong's potometer (at least for a dicot and a monocot). - 4. Effect of Temperature on membrane permeability by colorimetric method. - 5. Study of mineral deficiency symptoms using plant material/photographs. - 6. Demonstration of amylase enzyme activity and study the effect of substrate and Enzymeconcentration. - 7. Separation of chloroplast pigments using paper chromatography technique. - 8. Demonstration of Polyphenol oxidase enzyme activity (Potato tuber or Apple fruit) - 9. Anatomy of C3, C4 and CAM leaves - 10. Estimation of protein by biuret method/Lowry method - 11. Minor experiments Osmosis, Arc-auxonometer, ascent of sap through xylem, cytoplasmic streaming. ## **Model Question Paper for Practical Examination** Semester – IV/ Botany Core Course – 4 ### Plant Physiology and Metabolism Max. Time: 3 Hrs. Max. Marks: 50 - 1. Conduct the experiment 'A' (Major experiment), write aim, principle, material and apparatus/equipment, procedure, tabulate results and make conclusion. 20 M - 2. Demonstrate the experiment 'B' (Minor experiment), write the principle, procedure and give inference. - 3. Identify the following with apt reasons. $3 \times 4 = 12 M$ - C. Plant water relations / Mineral nutrition - **D.** Plant metabolism - E. Plant growth and development - 4. Record + Viva-voce 5 + 3 = 8 M # Suggested co-curricular activities for Botany Core Course-4 in Semester-IV: #### A. Measurable: #### a. Student seminars: - 1. Antitranspirants and their significance in crop physiology and horticulture. - 2. Natural chelating agents in plants. - 3. Criteria of essentiality of elements and beneficial elements. - 4. Hydroponics, aquaponics and aeroponics. - 5. Mycorrhizal association and mineral nutrition in plants. - 6. Non-proteinaceous enzymes. - 7. Respiratory inhibitors. - 8. Structure of ATPase and Chemiosmotic hypothesis. - 9. Transpiration and photosynthesis a compromise. - 10. Amphibolic pathways and bypass pathways in plants. - 11. Non-biological nitrogen fixation. - 12. Role of Hydrogenase in nitrogen fixation. - 13. Plant lectins their role in plants and use in medicine and medical research. ### **b.** Student Study Projects: - 1. Stomatal densities among different groups of plants. - 2. Various treatments (salt, cold, high temperature, heavy metals) and their effects on seed germination. - 3. Effects of plant hormones (IAA, Gibberellin and Kinetin) on Seed Germination. - 4. Diurnal variation of stomatal behavior in CAM and C3 plants found in local area. - 5. Effects of nitrogen fertilizer on plant growth. - 6. Enumeration of C3, C4 and CAM plants in the local area. - 7. Effect of different light wavelengths (red light, green light, blue light) on apparent photosynthesis in terms of growth. - 8. Light effects on leaf growth and leaf orientation. - 9. Artificial Fruit Ripening Process by various treatments (carbide and ethylene). - 10. Study of relative water content and water retention by leaves under different environments. - 11. Study of soil nutrients in local agricultural fields. - 12. Study of mineral deficiency symptoms of various crops of local area. - 13. Study of local weeds in crop fields. - 14. Studies on seed storage proteins, oils and starch in local millets and pulse crops. - 15. Making a report on LDPs, SDPs and DNPs in their locality. - **c. Assignments**: Written assignment at home / during '0' hour at college; preparation of charts with drawings, making models etc., on topics included in syllabus. ### B. General: - 1. Group Discussion (GD)/ Quiz/ Just A Minute (JAM) on different modules in syllabus of the course. - 2. Visit to a Plant Physiology laboratory in a University or Physiology division in a Agriculture/Horticulture University/Research station. ## IV Semester / Botany Core Course -5 ### Cell Biology, Genetics and Plant Breeding (Total hours of teaching – 60 @ 04 Hrs./Week) ### **Theory:** ### **Learning outcomes:** On successful completion of this course, the students will be able to: - Distinguish prokaryotic and eukaryotic cells and design the model of a cell. - Explain the organization of a eukaryotic chromosome and the structure of geneticmaterial. - ➤ Demonstrate techniques to observe the cell and its components under amicroscope. - ➤ Discuss the basics of Mendelian genetics, its variations and interpret inheritance of traits in living beings. - ➤ Elucidate the role of extra-chromosomal genetic material for inheritance of characters. - Evaluate the structure, function and regulation of genetic material. - > Understand the application of principles and modern techniques inplant breeding. - Explain the procedures of selection and hybridization for improvement of crops. Unit – 1: The Cell 12 Hrs. - 1. Cell theory; prokaryotic vs eukaryotic cell; animal vs plant cell; a brief account onultra-structure of a plant cell. - 2. Ultra-structure of cell wall. - 3. Ultra-structure of plasma membrane and various theories on its organization. - 4. Polymorphic cell organelles (Plastids); ultra structure of chloroplast. Plastid DNA. ### **Unit – 2: Chromosomes** 12 Hrs. - 1. Prokaryotic vs eukaryotic chromosome. Morphology of a eukayotic chromosome. - 2. Euchromatin and Heterochromatin; Karyotype and ideogram. - 3. Brief account of chromosomal aberrations structural and numerical changes - 4. Organization of DNA in a chromosome (solenoid and nucleosome models).