

ANDHRA PRADESH STATE COUNCIL OF HIGHER EDUCATION

(A Statutory body of the Government of Andhra Pradesh)

3rd,4th and 5th floors, Neeladri Towers, Sri Ram Nagar,6th Battalion Road, Atmakur (V), Mangalagiri (M), Guntur-522 503, Andhra Pradesh **Web**: www.apsche.org **Email**: acapsche@gmail.com

REVISED SYLLABUS OF B.Sc (Chemistry) UNDER CBCS FRAMEWORK WITH EFFECT FROM 2020-2021

PROGRAMME: THREE-YEAR B.Sc. (B.Sc Chemistry)

(With Learning Outcomes, Unit-wise Syllabus, References, Co-curricular Activities & Model Q.P.)

For Fifteen Courses of 1, 2, 3 & 4 Semesters)

(To be Implemented from 2020-21 Academic Year) Andhra Pradesh State Council of Higher Education

B.Sc. Chemistry Revised Syllabus under CBCS w.e.f. 2020-21

Structure of Chemistry Core Syllabus under CBCS

YEAR	SEMESTER	COURSE	TITLE	MARKS	CREDITS
I	I	Ι	Inorganic and Physical Chemistry	100	03
			Practical – I Analysis of SALT MIXTURE	50	02
	II	II	Organic and General Chemistry	100	03
			Practical – IIVolumetric Analysis	50	02
II	III	III	Organic Chemistry and Spectroscopy	100	03
			Practical – IIIOrganic preparations and IR Spectral Analysis	50	02
	IV	IV	Inorganic, Organic and Physical Chemistry	100	03
			Practical – IVOrganic Qualitative analysis	50	02
		_	Inorganic and Physical Chemistry	100	02
		V	Practical-V Course Conductometric and Potentiometric Titrimetry	50	02

SEMESTER – I

Course I (Inorganic & Physical Chemistry) 60 hrs. (4h/w)

Course outcomes:

At the end of the course, the student will be able to;

- 1. Understand the basic concepts of p-block elements
- 2. Explainthe differencebetweensolid, liquidand gases in terms of intermolecular interactions.
- 3. Applytheconceptsofgasequations,pHandelectrolyteswhilestudyingotherchemistrycour ses.

24 h

INORGANIC CHEMISTRY

UNIT-I

Chemistry of p-block elements

8h

- Group 13: Preparation & structure of Diborane, Borazine
- Group 14: Preparation, classification and uses of silicones
- **Group 15**: Preparation & structures of Phosphonitrilic halides {(PNCl₂)_nwhere n=3, 4
- **Group 16**: Oxides and Oxoacids of Sulphur (structures only)
- **Group 17**: Pseudohalogens, Structures of Interhalogen compounds.

UNIT-II

1. Chemistry of d-block elements:

6h

Characteristics of d-block elements with special reference to electronic configuration, variable valence, magnetic properties, catalytic properties and ability to form complexes. Stability of various oxidation states.

2. Chemistry of f-block elements:

6h

Chemistry of lanthanides - electronic structure, oxidation states, lanthanide contraction, consequences of lanthanide contraction, magnetic properties. Chemistry of actinides - electronic configuration, oxidation states, actinide contraction, comparison of lanthanides and actinides.

3. Theories of bonding in metals:

Valence bond theory and Free electron theory, explanation of thermal and electrical conductivity of metals based on these theories, Band theory- formation of bands, explanation of conductors, semiconductors and insulators.

PHYSICAL CHEMISTRY

36h

UNIT-III

Solidstate 10h

Symmetry in crystals. Law of constancy of interfacial angles. The law of rationality of indices. The law of symmetry. Miller indices, Definition of lattice point, space lattice, unit cell. Bravais lattices and crystal systems. X-ray diffraction and crystal structure. Bragg's law. Powder method. Defects in crystals. Stoichiometric and non-stoichiometric defects.

UNIT-IV

1. Gaseous state 6h

van der Waal's equation of state. Andrew's isotherms of carbon dioxide, continuity of state. Critical phenomena. Relationship between critical constants and vander Waal's constants. Lawof corresponding states. Joule- Thomson effect. Inversion temperature.

2.Liquid state 4h

Liquid crystals,mesomorphicstate. Differences between liquid crystal and solid/liquid. Classification of liquid crystals into Smectic and Nematic. Application of liquid crystals as LCD devices.

UNIT-V

Solutions, Ionic equilibrium& dilute solutions

1. Solutions 6h

Azeotropes-HCl-H₂O system and ethanol-water system. Partially miscible liquids-phenol-water system. Critical solution temperature (CST), Effect of impurity on consulate temperature. Immiscible liquids and steam distillation.Nernst distribution law. Calculation of the partition coefficient. Applications of distribution law.

2. Ionic equilibrium 3h

Ionic product, common ion effect, solubility and solubility product. Calculations based on solubility product.

3. Dilute solutions 7h

Colligative properties- RLVP, Osmotic pressure, Elevation in boing point and depression in freezing point. Experimental methods for the determination of molar mass of a non-volatile

solute using osmotic pressure, Elevation in boing point and depression in freezing point. Abnormal colligative properties. Van't Hoff factor.

Co-curricular activities and Assessment Methods

- 1. Continuous Evaluation: Monitoring the progress of student's learning
- 2. ClassTests, Worksheets and Quizzes
- 3. Presentations, Projects and Assignments and Group Discussions: Enhances critical thinking skills and personality
- 4. SemesterendExamination:criticalindicatorofstudent'slearningandteachingmethodsadoptedby teachersthroughoutthesemester.

List of Reference Books

- 1. Principles of physical chemistry by Prutton and Marron
- 2. Solid State Chemistry and its applications by Anthony R. West
- 3. Text book of physical chemistry by K L Kapoor
- 4. Text book of physical chemistry by S Glasstone
- 5. Advanced physical chemistry by Bahl and Tuli
- 6. Inorganic Chemistry by J.E.Huheey
- 7. Basic Inorganic Chemistry by Cotton and Wilkinson
- 8. A textbook of qualitative inorganic analysis by A.I. Vogel
- 9. Atkins, P.W. & Paula, J. de Atkin's Physical Chemistry Ed., Oxford University Press 10th Ed (2014).
- 10. Castellan, G.W. Physical Chemistry 4th Ed. Narosa (2004).
- 11. Mortimer, R. G. Physical Chemistry 3rd Ed. Elsevier: NOIDA, UP (2009).
- 12. Barrow, G.M. Physical Chemistry

LABORATORY COURSE -I

30hrs (2 h / w)

Practical-I Analysis of SALT MIXTURE

(At the end of Semester-I)

Qualitative inorganic analysis (Minimum of Six mixtures should be analysed) 50 M

Course outcomes:

At the end of the course, the student will be able to;

- 1. Understand the basic concepts of qualitative analysis of inorganic mixture
- 2. Use glassware, equipment and chemicals and follow experimental procedures in the laboratory
- 3. Apply the concepts of common ion effect, solubility product and concepts related to qualitative analysis

Analysis of SALT MIXTURE

50 M

Analysis of mixture salt containing two anions and two cations (From two different groups) from the following:

Anions: Carbonate, Sulphate, Chloride, Bromide, Acetate, Nitrate, Borate, Phosphate.

Cations: Lead, Copper, Iron, Aluminium, Zinc, Nickel, Manganese, Calcium, Strontium, Barium, Potassium and Ammonium.